22 research outputs found

    An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models

    Get PDF
    We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters

    Net primary productivity estimates and environmental variables in the Arctic Ocean; an assessment of coupled physical-biogeochemical models

    Get PDF
    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO (sub 3) ), mixed layer depth (MLD), euphotic layer depth (Z (sub eu) ), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO (sub 3) , MLD, and Z (sub eu) throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO (sub 3) was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modelin

    A Spatial Evaluation of Arctic Sea Ice and Regional Limitations in CMIP6 Historical Simulations

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.1175/JCLI-D-20-0491.1The Arctic sea ice response to a warming climate is assessed in a subset of models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6), using several metrics in comparison with satellite observations and results from the Pan-Arctic Ice Ocean Modeling and Assimilation System and the Regional Arctic System Model. Our study examines the historical representation of sea ice extent, volume, and thickness using spatial analysis metrics, such as the integrated ice edge error, Brier score, and spatial probability score. We find that the CMIP6 multimodel mean captures the mean annual cycle and 1979–2014 sea ice trends remarkably well. However, individual models experience a wide range of uncertainty in the spatial distribution of sea ice when compared against satellite measurements and reanalysis data. Our metrics expose common and individual regional model biases, which sea ice temporal analyses alone do not capture. We identify large ice edge and ice thickness errors in Arctic subregions, implying possible model specific limitations in or lack of representation of some key physical processes. We postulate that many of them could be related to the oceanic forcing, especially in the marginal and shelf seas, where seasonal sea ice changes are not adequately simulated. We therefore conclude that an individual model’s ability to represent the observed/reanalysis spatial distribution still remains a challenge. We propose the spatial analysis metrics as useful tools to diagnose model limitations, narrow down possible processes affecting them, and guide future model improvements critical to the representation and projections of Arctic climate change.U.S. NavyDepartment of Energy (DOE)Regional and Global Model Analysis (RGMA)Office of Naval Research (ONR)Arctic and Global Prediction (AGP)National Science Foundation (NSF)Arctic System Science (ARCSS)Ministry of Science and Higher Education in PolandDOE: 89243019SSC0036DESC0014117ONR: N0001418WX00364NSF: IAA1417888IAA160360

    On the variability of the Bering Sea Cold Pool and implications for the biophysical environment

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1371/ journal.pone.0266180The Bering Sea experiences a seasonal sea ice cover, which is important to the biophysical environment found there. A pool of cold bottom water (<2 ?C) is formed on the shelf each winter as a result of cooling and vertical mixing due to brine rejection during the predominately local sea ice growth. The extent and distribution of this Cold Pool (CP) is largely controlled by the winter extent of sea ice in the Bering Sea, which can vary considerably and recently has been much lower than average. The cold bottom water of the CP is important for food security because it delineates the boundary between arctic and subarctic demersal fish species. A northward retreat of the CP will likely be associated with migration of subarctic species toward the Chukchi Sea. We use the fully-coupled Regional Arctic System Model (RASM) to examine variability of the extent and distribution of the CP and its relation to change in the sea ice cover in the Bering Sea during the period 1980–2018. RASM results confirm the direct correlation between the extent of sea ice and the CP and show a smaller CP as a consequence of realistically simulated recent declines of the sea ice cover in the Bering Sea. In fact, the area of the CP was found to be only 31% of the long-term mean in July of 2018. In addition, we also find that a low ice year is followed by a later diatom bloom, while a heavy ice year is followed by an early diatom bloom. Finally, the RASM probabilistic intra-annual forecast capability is reviewed, based on 31-member ensembles for 2019– 2021, for its potential use for prediction of the winter sea ice cover and the subsequent summer CP area in the Bering Sea.This work was supported by the US National Science Foundation (GEO/PLR ARCSS IAA1417888 and IAA1603602), the US Department of Energy (DOE) Regional and Global Model Analysis (RGMA) (89243019SSC0036 and DESC0014117), and the Office of Naval Research (ONR) Arctic and Global Prediction (AGP) (N0001418WX00364). The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources.This work was supported by the US National Science Foundation (GEO/PLR ARCSS IAA1417888 and IAA1603602), the US Department of Energy (DOE) Regional and Global Model Analysis (RGMA) (89243019SSC0036 and DESC0014117), and the Office of Naval Research (ONR) Arctic and Global Prediction (AGP) (N0001418WX00364). The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources

    Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean

    Get PDF
    Previous observational studies have found increasing primary production (PP) in response to declining sea ice cover in the Arctic Ocean. In this study, under-ice PP was assessed based on three coupled ice-ocean-ecosystem models participating in the Forum for Arctic Modeling and Observational Synthesis (FAMOS) project. All models showed good agreement with under-ice measurements of surface chlorophyll-a concentration and vertically integrated PP rates during the main under-ice production period, from mid-May to September. Further, modeled 30-year (1980–2009) mean values and spatial patterns of sea ice concentration compared well with remote sensing data. Under-ice PP was higher in the Arctic shelf seas than in the Arctic Basin, but ratios of under-ice PP over total PP were spatially correlated with annual mean sea ice concentration, with higher ratios in higher ice concentration regions. Decreases in sea ice from 1980 to 2009 were correlated significantly with increases in total PP and decreases in the under-ice PP/total PP ratio for most of the Arctic, but nonsignificantly related to under-ice PP, especially in marginal ice zones. Total PP within the Arctic Circle increased at an annual rate of between 3.2 and 8.0 Tg C/yr from 1980 to 2009. This increase in total PP was due mainly to a PP increase in open water, including increases in both open water area and PP rate per unit area, and therefore much stronger than the changes in under-ice PP. All models suggested that, on a pan-Arctic scale, the fraction of under-ice PP declined with declining sea ice cover over the last three decades

    On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.5194/os-18-29-2022Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume trans port modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.The science was financially supported by: US National Science Foundation (Grant Number: GEO/PLR ARCSS 575 IAA#1417888), the Department of Energy (DOE) Regional and Global Model Analysis (RGMA), the Swedish Research Council Formas (contract no. 2018-01398), and the Swedish Research Council (contract nos. 621-2006-3240, 621-2010-4084, and 2012-1680). This work was carried out with logistic support from the Knut and Alice Wallenberg Foundation and from Swedish Polar Research Secretariat. The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources. This study was also supported by the Russian Scientific Foundation (grant no. # 21-77-580 30001).The science was financially supported by: US National Science Foundation (Grant Number: GEO/PLR ARCSS 575 IAA#1417888), the Department of Energy (DOE) Regional and Global Model Analysis (RGMA), the Swedish Re search Council Formas (contract no. 2018-01398), and the Swedish Research Council (contract nos. 621-2006-3240, 621-2010-4084, and 2012-1680). This work was carried out with logistic support from the Knut and Alice Wallenberg Foundation and from Swedish Polar Research Secretariat. The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources. This study was also supported by the Russian Scientific Foundation (grant no. # 21-77-580 30001)

    Hidden Production: On the Importance of Pelagic Phytoplankton Blooms Beneath Arctic Sea Ice

    Get PDF
    The article of record as published may be found at https://doi.org/10.1029/2020JC016211Recent observations suggest that substantial phytoplankton blooms occur under sea ice on Arctic continental shelves during June and July. This is opposed to the traditional view that no significant biomass is produced in sea‐ice covered waters. However, no observational estimates are available on the Arctic‐wide primary production beneath sea ice. Here, using a fully coupled Arctic system model, we estimate that 63%/41% of the total primary production in the central Arctic occurs in waters covered by sea ice that is ≄50%/≄85% concentration. The total primary production there is increasing at a rate of 5.2% per decade during 1980–2018. Increased light transmission, due to the removal of sea ice, more extensive melt ponds, and thinner sea ice, is implicated as the main cause of increasing trends in primary production

    Sensitivity of ocean hydrography and fluxes across Fram Strait in the Regional Arctic System Model

    Get PDF
    2018 Ocean Sciences Meeting, AGUThe Arctic has experienced some of the most extreme climate changes currently occurring anywhere on Earth, including a warming trend. One of the key indicators of such decadal changes has been the decrease of the sea ice cover, driven by atmospheric forcing and the inflow of warm waters from the sub-polar oceans. While Earth System models (ESMs) are in broad agreement with such changes, they are limited in representing some critical high-latitude processes. Those include processes controlling the inflow, accumulation and distribution of heat in the upper ocean and its interaction with the sea ice cover. Such ESM limitations are likely due to a combination of coarse resolution, inadequate parameterizations, or under-represented processes, and they affect model skill in representing and predicting polar climate. To better understand some of these limitations, a series of sensitivity experiments are performed using the Regional Arctic System Model (RASM). RASM consists of the atmosphere, ocean, sea ice, land hydrology and runoff routing components, coupled through the flux coupler. The ocean and sea ice configurations include the horizontal resolution of 1/12o (~9km) or 1/48o (~2.4 km) and 45 or 60 vertical levels. We focus on the oceanic volume and property fluxes across Fram Strait and analyze their sensitivity to altered horizontal and vertical resolution as well as to parameterizations of air-ice-ocean coupling. Next, we compare model output against moored and hydrographic observations in the Fram Strait region. Our analyses suggest that both surface momentum coupling and model resolution influence the upper ocean thermohaline structure and fluxes at Fram Strait. The role of mesoscale eddies in the recirculation within and exchanges through Fram Strait will be quantified. Suggestions for a limited observational monitoring approach will be provided. Finally, comparisons with observations will be summarized to guide improved simulations of such exchanges

    High-Resolution Modeling of Arctic Climate Using the Regional Arctic System Model for Dynamical Downscaling of Global Climate Model Reanalyses and Projections

    Get PDF
    The article of record as published may be found at https://agu.confex.com/agu/osm20/meetingapp.cgi/Paper/641925Ocean Sciences Meeting 2020The Arctic is one of the most challenging regions to model climate change due to its complexity, including the cryosphere, small scale processes and feedbacks controlling its amplified response to global climate change. The combination of these factors defines the need for high spatial and temporal model resolution, which is commonly not practical for most state-of-the-art global Earth system models (ESMs), including those participating in the Coupled Model Intercomparison Project Phase 6. We offer an alternative approach to improve model physics and reduce uncertainties in modeling Arctic climate using a high resolution regional climate system model for dynamical downscaling of output from ESMs. The Regional Arctic System Model (RASM) has been developed to better understand the past and present operation of the Arctic climate system and to predict its change at time scales up to decades. RASM is a coupled model, consisting of the atmosphere, ocean, sea ice, land hydrology and river routing scheme components. Its domain is pan-Arctic, with 50-km or 25-km grids for the atmosphere and land components. The ocean and sea ice components are configured at ~9.3-km or ~2.4-km grids horizontally and with 45 or 60 vertical layers. For hindcast simulations, RASM derives boundary conditions from global atmospheric reanalyses, allowing comparison with observations in place and time, which is a unique capability not available with ESMs. We will discuss improvements to RASM model physics offered by high resolution and in generation of internally consistent realistic initial conditions for Arctic climate prediction. We will also discuss the need for fine-tuning of scale aware parameterizations of sub-grid physical processes in varying model configurations. Finally, selected results will be presented to demonstrate gains of dynamical downscaling in comparison with observations and with the global reanalysis and predictions

    Effects of Model Resolution and Ocean Mixing on Forced Ice‐Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1002/2017JC013365The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 18 (40 60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/128 ( 9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameteriza- tion which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contrib- uted to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin
    corecore